Metformin – Nerve Pain & Microvascular Pain (angina)


.

.

.

Metformin & Pain

.

.

A diabetes drug used for many who have no diabetes. Recent discussion on metformin here and here.

.

Metformin “can lead to a long-lasting reversal of pain hypersensitivity even long after treatment cessation, indicative of disease modification.” [ref below]

.

.

References:

.

A successful case of pain management using metformin in a patient with adiposis dolorosa.

International Journal of Clinical Pharmacology and Therapeutics

.

.

In this case report, we describe a patient with Dercum’s disease who was successfully managed with metformin. The administration of metformin reduced pain intensity from 9/10 to 3/10 and favorably affected the profile of inflammatory cytokines (i.e., TNF a, IL-1β, IL-6, and IL-10), adipokines (i.e., adiponectin, leptin, and resistin), and β-endorphin. Because each variable was affected moderately by the drug, in the range of 20 – 30%, it follows that these effects are additive, i.e., they act independently of each other. However, taking into account advances in the pharmacology of metformin, it seems that other phenomena, such as modulation of synaptic plasticity, activation of microglia, and autophagy of the afferents supplying painful lipomas should be taken into consideration. Nonetheless, metformin deserves further exploration in the biology of pain.

.

.

The use of metformin is associated with decreased lumbar radiculopathy pain

Journal of pain [2013], from University of Arizona Tucson, Ted Price’s lab, and USC

.

Abstract:

Lumbar radiculopathy pain represents a major public health problem, with few effective long-term treatments. Preclinical neuropathic and postsurgical pain studies implicate the kinase adenosine monophosphate activated kinase (AMPK) as a potential pharmacological target for the treatment of chronic pain conditions. Metformin, which acts via AMPK, is a safe and clinically available drug used in the treatment of diabetes. Despite the strong preclinical rationale, the utility of metformin as a potential pain therapeutic has not yet been studied in humans. Our objective was to assess whether metformin is associated with decreased lumbar radiculopathy pain, in a retrospective chart review. We completed a retrospective chart review of patients who sought care from a university pain specialist for lumbar radiculopathy between 2008 and 2011. Patients on metformin at the time of visit to a university pain specialist were compared with patients who were not on metformin. We compared the pain outcomes in 46 patients on metformin and 94 patients not taking metformin therapy. The major finding was that metformin use was associated with a decrease in the mean of “pain now,” by −1.85 (confidence interval: −3.6 to −0.08) on a 0–10 visual analog scale, using a matched propensity scoring analysis and confirmed using a Bayesian analysis, with a significant mean decrease of −1.36 (credible interval: −2.6 to −0.03). Additionally, patients on metformin showed a non-statistically significant trend toward decreased pain on a variety of other pain descriptors. Our proof-of-concept findings suggest that metformin use is associated with a decrease in lumbar radiculopathy pain, providing a rational for larger retrospective trials in different pain populations and for prospective trials, to test the effectiveness of metformin in reducing neuropathic pain.

.

.

The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model.

PLoS One [2014] from MD Anderson Cancer Center

 .

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) characterized by loss of sensory sensitivity and pain in hands and feet is the major dose-limiting toxicity of many chemotherapeutics. At present, there are no FDA-approved treatments for CIPN. The anti-diabetic drug metformin is the most widely used prescription drug in the world and improves glycemic control in diabetes patients. There is some evidence that metformin enhances the efficacy of cancer treatment. The aim of this study was to test the hypothesis that metformin protects against chemotherapy-induced neuropathic pain and sensory deficits. Mice were treated with cisplatin together with metformin or saline. Cisplatin induced increased sensitivity to mechanical stimulation (mechanical allodynia) as measured using the von Frey test. Co-administration of metformin almost completely prevented the cisplatin-induced mechanical allodynia. Co-administration of metformin also prevented paclitaxel-induced mechanical allodynia. The capacity of the mice to detect an adhesive patch on their hind paw was used as a novel indicator of chemotherapy-induced sensory deficits. Co-administration of metformin prevented the cisplatin-induced increase in latency to detect the adhesive patch indicating that metformin prevents sensory deficits as well. Moreover, metformin prevented the reduction in density of intra-epidermal nerve fibers (IENFs) in the paw that develops as a result of cisplatin treatment. We conclude that metformin protects against pain and loss of tactile function in a mouse model of CIPN. The finding that metformin reduces loss of peripheral nerve endings indicates that mechanism underlying the beneficial effects of metformin includes a neuroprotective activity. Because metformin is widely used for treatment of type II diabetes, has a broad safety profile, and is currently being tested as an adjuvant drug in cancer treatment, clinical translation of these findings could be rapidly achieved.

.

.

Proteomic and functional annotation analysis of injured peripheral nerves reveals ApoE as a protein upregulated by injury that is modulated by metformin treatment

from Mol Pain [2013], from University of Arizona

.

Abstract

BACKGROUND:

Peripheral nerve injury (PNI) results in a fundamental reorganization of the translational machinery in the injured peripheral nerve such that protein synthesis is increased in a manner linked to enhanced mTOR and ERK activity. We have shown that metformin treatment, which activates adenosine monophosphate-activated protein kinase (AMPK), reverses tactile allodynia and enhanced translation following PNI. To gain a better understanding of how PNI changes the proteome of the sciatic nerve and ascertain how metformin treatment may cause further change, we conducted a range of unbiased proteomic studies followed by biochemical experiments to confirm key results.

.

CONCLUSIONS:

These proteomic findings support the hypothesis that PNI leads to a fundamental reorganization of gene expression within the injured nerve. Our data identify a key association of ApoE with PNI that is regulated by metformin treatment. We conclude from the known functions of ApoE in the nervous system that ApoE may be an intrinsic factor linked to nerve regeneration after PNI, an effect that is further enhanced by metformin treatment.

.

.

Volume 107 of the series Experientia Supplementum [2016] from University of Texas Dallas

.

Abstract:

Chronic pain is a major clinical problem that is poorly treated with available therapeutics. Adenosine monophosphate-activated protein kinase (AMPK) has recently emerged as a novel target for the treatment of pain with the exciting potential for disease modification. AMPK activators inhibit signaling pathways that are known to promote changes in the function and phenotype of peripheral nociceptive neurons and promote chronic pain. AMPK activators also reduce the excitability of these cells suggesting that AMPK activators may be efficacious for the treatment of chronic pain disorders, like neuropathic pain, where changes in the excitability of nociceptors is thought to be an underlying cause. In agreement with this, AMPK activators have now been shown to alleviate pain in a broad variety of preclinical pain models indicating that this mechanism might be engaged for the treatment of many types of pain in the clinic. A key feature of the effect of AMPK activators in these models is that they can lead to a long-lasting reversal of pain hypersensitivity even long after treatment cessation, indicative of disease modification. Here, we review the evidence supporting AMPK as a novel pain target pointing out opportunities for further discovery that are likely to have an impact on drug discovery efforts centered around potent and specific allosteric activators of AMPK for chronic pain treatment.

.

.

Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain.

Mol Pain [2011] from University of Arizona

.

Abstract

Neuropathic pain is a debilitating clinical condition with few efficacious treatments, warranting development of novel therapeutics. We hypothesized that dysregulated translation regulation pathways may underlie neuropathic pain. Peripheral nerve injury induced reorganization of translation machinery in the peripheral nervous system of rats and mice, including enhanced mTOR and ERK activity, increased phosphorylation of mTOR and ERK downstream targets, augmented eIF4F complex formation and enhanced nascent protein synthesis. The AMP activated protein kinase (AMPK) activators, metformin and A769662, inhibited translation regulation signaling pathways, eIF4F complex formation, nascent protein synthesis in injured nerves and sodium channel-dependent excitability of sensory neurons resulting in a resolution of neuropathic allodynia. Therefore, injury-induced dysregulation of translation control underlies pathology leading to neuropathic pain and reveals AMPK as a novel therapeutic target for the potential treatment of neuropathic pain.

.

.

Contrasting effects of chronic, systemic treatment with mTOR inhibitors rapamycin and metformin on adult neural progenitors in mice.

Age [20124, from University of Arizona

.

Abstract:

The chronic and systemic administration of rapamycin extends life span in mammals. Rapamycin is a pharmacological inhibitor of mTOR. Metformin also inhibits mTOR signaling but by activating the upstream kinase AMPK. Here we report the effects of chronic and systemic administration of the two mTOR inhibitors, rapamycin and metformin, on adult neural stem cells of the subventricular region and the dendate gyrus of the mouse hippocampus. While rapamycin decreased the number of neural progenitors, metformin-mediated inhibition of mTOR had no such effect. Adult-born neurons are considered important for cognitive and behavioral health, and may contribute to improved health span. Our results demonstrate that distinct approaches of inhibiting mTOR signaling can have significantly different effects on organ function. These results underscore the importance of screening individual mTOR inhibitors on different organs and physiological processes for potential adverse effects that may compromise health span.

..

.

Two Weeks of Metformin Treatment Enhances Mitochondrial Respiration in Skeletal Muscle of AMPK Kinase Dead but Not Wild Type Mice

.PLoS One from University of Copenhagen [2013].

.

Abstract:

Metformin is used as an anti-diabetic drug. Metformin ameliorates insulin resistance by improving insulin sensitivity in liver and skeletal muscle. Reduced mitochondrial content has been reported in type 2 diabetic muscles and it may contribute to decreased insulin sensitivity characteristic for diabetic muscles. The molecular mechanism behind the effect of metformin is not fully clarified but inhibition of complex I in the mitochondria and also activation of the 5′AMP activated protein kinase (AMPK) has been reported in muscle. Furthermore, both AMPK activation and metformin treatment have been associated with stimulation of mitochondrial function and biogenesis. However, a causal relationship in skeletal muscle has not been investigated. We hypothesized that potential effects of in vivo metformin treatment on mitochondrial function and protein expressions in skeletal muscle are dependent upon AMPK signaling. We investigated this by two weeks of oral metformin treatment of muscle specific kinase dead α2 (KD) AMPK mice and wild type (WT) littermates. We measured mitochondrial respiration and protein activity and expressions of key enzymes involved in mitochondrial carbohydrate and fat metabolism and oxidative phosphorylation. Mitochondrial respiration, HAD and CS activity, PDH and complex I-V and cytochrome c protein expression were all reduced in AMPK KD compared to WT tibialis anterior muscles. Surprisingly, metformin treatment only enhanced respiration in AMPK KD mice and thereby rescued the respiration defect compared to the WT mice. Metformin did not influence protein activities or expressions in either WT or AMPK KD mice.

.

We conclude that two weeks of in vivo metformin treatment enhances mitochondrial respiration in the mitochondrial deficient AMPK KD but not WT mice. The improvement seems to be unrelated to AMPK, and does not involve changes in key mitochondrial proteins.

.

.

Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries

.

Journal of the American College of Cardiology [2006], from University of Glasgow Cardiovascular Research Centre
.

Abstract:

We conducted an 8-week double-blind, randomized, placebo-controlled study of metformin 500 mg twice a day in 33 women with a prior history of normal coronary angiography but 2 consecutive positive (ST-segment depression ≥1 mm) exercise tolerance tests. Women randomized to metformin (n = 16) showed significant improvements in endothelium-dependent microvascular function (p < 0.0001) and maximal ST-segment depression (p = 0.013), and a trend (p = 0.056) toward reductions in chest pain incidence relative to placebo recipients. Hence, metformin may improve vascular function and decrease myocardial ischemia in nondiabetic women with chest pain and angiographically normal coronary arteries. Larger controlled trials of longer duration are warranted.

.

.

.
.
.
.
.
.
.

.

The material on this site is for informational purposes only.

.

It is not legal for me to provide medical advice without an examination.

.

It is not a substitute for medical advice, diagnosis or treatment provided by a qualified health care provider.

~~

This site is not for email and not for appointments.

If you wish an appointment, please telephone the office to schedule.

~~~~~

For My Home Page, click here:  Welcome to my Weblog on Pain Management!

..

Please IGNORE THE ADS BELOW. They are not from me.

.

.

.

.

.